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Abstract: Using the inverse scattering method we construct an exact stationary asymp-

totically flat 4+1-dimensional vacuum solution describing “black saturn”: a spherical black

hole surrounded by a black ring. Angular momentum keeps the configuration in equilib-

rium. Black saturn reveals a number of interesting gravitational phenomena: (1) The

balanced solution exhibits 2-fold continuous non-uniqueness for fixed mass and angular

momentum; (2) Remarkably, the 4+1d Schwarzschild black hole is not unique, since the

black ring and black hole of black saturn can counter-rotate to give zero total angular

momentum at infinity, while maintaining balance; (3) The system cleanly demonstrates

rotational frame-dragging when a black hole with vanishing Komar angular momentum is

rotating as the black ring drags the surrounding spacetime. Possible generalizations include

multiple rings of saturn as well as doubly spinning black saturn configurations.
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1. Introduction

Multi-black hole spacetimes play an interesting role in black hole physics. A central

question is how to keep a configuration of multiple black holes in equilibrium. Two

Schwarzschild black holes attract each other and cannot be in equilibrium without ex-

ternal forces to hold them in place. The simplest way to achieve a stationary balanced

configuration is by adding enough electric charge to each black hole, so that the elec-

tromagnetic repulsion exactly cancels the gravitational attraction. In 3+1 dimensions, the

resulting solution, and its generalization to multiple black holes, is of course the well-known

extremal multi-Reissner Nordstrom black hole solution [1].

For asymptotically flat vacuum solutions, rotation seems to be the only candidate

for keeping black holes apart. However, for the 3+1-dimensional axisymmetric double

Kerr solution [2], the spin-spin interaction [3] is not sufficiently strong to balance the

gravitational attraction of black holes with regular horizons [4 – 7]. Hence multi-Kerr black

hole spacetimes are not in equilibrium, but suffer from singular struts which provide the

pressure to keep the black holes apart [5].

We present here a 4+1-dimensional stationary vacuum solution for which angular mo-

mentum does provide sufficient force to keep two black objects apart. The possibility of

balanced, regular multi-black hole vacuum spacetimes can be motivated as follows. The

five-dimensional vacuum Einstein’s equations admit black ring solutions [8] which have

horizons of topology S2 × S1. Rotation prevents the black ring from collapsing. Very

thin black rings are kept in equilibrium by a Newtonian force balance between a string-

like tension and a centrifugal force arising from the rotation [9] (see also [10]). With this

Newtonian balance in mind, it is natural to ask if rotation provides a sufficiently strong

force to also keep a black ring in equilibrium in an “external potential”. This could for

instance be in the gravitational field of a Myers-Perry black hole [11] at the center of the

black ring. Our solution realizes this possibility: a black ring balanced by rotation around

a concentric spherical black hole in an asymptotically flat spacetime. We call this balanced

configuration black saturn.

It should be emphasized that the black hole and the black ring generally have strong

gravitational backreactions, so that only for very thin black rings with large S1 radius

does the motivation of a black ring in an external potential apply. On the other hand, the

gravitational interactions between the two objects give rise to interesting phenomena, such

as frame-dragging, which we examine in detail. We summarize here a selection of physical

properties of black saturn:

- Continuous non-uniqueness: The total mass M and angular momentum J measured

at infinity can be distributed continuously between the two black objects in the

balanced saturn configuration. Thus the solution exhibits 2-fold continuous non-

uniqueness. An additional discrete non-uniqueness exists in regimes that admit both

thin and fat black rings.

- Counter rotation: The black ring and the S3 black hole have independent rotation

parameters, and they can be co-rotating as well as counter-rotating while maintaining
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balance. (We define co- and counter-rotation in terms of the relative sign of the

angular velocities.)

- Non-uniqueness of the 4+1d Schwarzschild black hole: Strikingly, the black ring and

S3 black hole can be counter-rotating to give zero total ADM angular momentum at

infinity. This means that the 4+1-dimensional Schwarzschild-Tangherlini black hole

is not the only asymptotically flat black hole solution with J = 0 at infinity; in fact

the J = 0 black saturn configurations are 2-fold continuously non-unique.

The existence of the J = 0 black saturn solutions does not contradict the uniqueness

theorem [12] that the Schwarzschild black hole is the only static asymptotically flat

vacuum black hole solution; the reason is simply that black saturn, while being

stationary, is non-static.

We also conclude that the slowly spinning Myers-Perry black hole is not unique; al-

lowing for non-connected horizons one can get around the perturbative results of [13].

- Rotational frame-dragging : The gravitational interaction between the black ring and

the S3 black hole manifests itself in form of rotational frame-dragging. This is most

cleanly illustrated when the intrinsic angular momentum (measured by the Komar

integral) of the S3 black hole is set to zero, JBH
Komar = 0. The angular velocity ΩBH,

however, is not zero but follows the behavior of the angular velocity ΩBR of the black

ring. We interpret this as frame-dragging: the rotating black ring drags the spacetime

around with it, and in effect the black hole rotates too, despite having no intrinsic

spin, JBH
Komar = 0. It is exciting to have access to rotational frame-dragging in an

exact solution.

- Countering frame-dragging : Counter-rotation makes it possible to tune the intrinsic

rotation JBH
Komar of the S3 black hole, so that it “cancels” the effect of dragging caused

by the surrounding black ring. This gives a solution for which the angular velocity

of the black hole vanishes: ΩBH = 0 while JBH
Komar 6= 0.

We have found no black saturn configurations (J = 0 or J nonzero) for which the total

horizon area of the S3 black hole and black ring exceeds the area aSchw
H of the static 4+1-

dimensional Schwarzschild black hole of the same ADM mass,1 however there are saturn

configurations with total area arbitrarily close to aSchw
H for any value of J . The resulting

phase diagram of 4+1-dimensional black holes is discussed in more detail in [14], where

black saturn thermodynamics is also studied.

It is worth noting that for 4+1-dimensional asymptotically flat black hole space-

times the continuous non-uniqueness will go much further than the 2-fold continuous non-

uniqueness of the simple black saturn system presented here. An obvious generalization

of our solutions includes multiple rings of saturn. As argued above, the total mass and

1This observation leads to the general expectation that for fixed mass the entropy of the d-dimensional

Schwarzschild black hole serves as an upper bound on the total entropy in any stationary d-dimensional

asymptotically flat balanced black hole vacuum spacetime.
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angular momentum can be distributed continuously between the n black objects in such a

spacetime, subject to balance conditions, and the result is 2(n − 1)-fold continuous non-

uniqueness. Including the second angular momentum gives doubly spinning multiple black

saturns with 3(n − 1)-fold continuous non-uniqueness, also for the J1 = J2 = 0 configu-

rations. If, as anticipated, the total area is bounded by aSchw
H for given total mass, each

component of an n-black hole system will necessarily have smaller area as n increases.

Supersymmetric black hole solutions with one or more concentric balanced black rings

around a rotating S3 black hole were constructed by Gauntlett and Gutowski [15]. Be-

ing supersymmetric, the solutions are extremally charged and saturate the BPS bound of

4+1-dimensional supergravity with U(1) vector multiplets. For the supersymmetric solu-

tions, it is not possible to observe dragging effects or counter-rotation, as we do for our

non-supersymmetric vacuum solutions, because the supersymmetric solutions have vanish-

ing angular velocities. The first order nature of the supersymmetry conditions [16, 17]

makes the construction of multi-black hole solutions a fairly straightforward superposition

of harmonic functions. For non-supersymmetric black holes we do not have this luxury,

and instead we have to solve the full second order Einstein’s equations.

The black saturn solution is found using the inverse scattering method. This solu-

tion generating method was first adapted to Einstein’s equations by Belinsky and Za-

kharov [18, 19], and has been used extensively to generate four-dimensional vacuum solu-

tions (see for instance [20] and references therein). Recently, the inverse scattering method,

and closely related solution generating techniques, have been applied to generate five-

dimensional rotating black hole vacuum solutions. The Myers-Perry black hole with two

independent rotation parameters was constructed by a smart implementation of the inverse

scattering method by Pomeransky [21]. Also, the unbalanced black ring with rotation on

the S2 was constructed [22, 23]; this solution was constructed independently in [24] without

use of solution generating techniques. The original balanced S1 rotating black ring [8] has

also been constructed by these methods [25, 26]. Most recently, Pomeransky and Sen’kov

have succeeded in constructing a doubly-spinning black ring solution [27] using the inverse

scattering method (numerical results were also obtained recently [28]).

We briefly review relevant aspects of the inverse scattering method in section 2, where

we also provide details of the construction of the black saturn solution. Section 3 contains

an analysis of the solution, including computations of the physical parameters and the

balance condition. The physics of the black saturn system is studied in section 4. Open

questions are discussed in section 5.

2. Construction of the solution

We review in section 2.1 the inverse scattering method with focus on the Belinsky-Zakharov

(BZ) n-soliton transformations [18, 19] (a detailed review can be found in the book [20]).

In section 2.2 we discuss the seed solution and generate the black saturn solution by soliton

transformations. The final result for the metric is presented in section 2.3.
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2.1 The inverse scattering method

The inverse scattering method can used as a solution generating method for stationary

axisymmetric spacetimes. These are D-dimensional spacetimes with D − 2 commuting

Killing vector fields, one of which is time. The method allows construction of new solutions

from known ones by means of purely algebraic manipulations.

We write the D-dimensional stationary axisymmetric spacetime as

ds2 = Gab dxadxb + e2ν
(

dρ2 + dz2
)

, (2.1)

where a, b = 1, . . . ,D − 2 and all compoments of the metric are functions of ρ and z only:

Gab = Gab(ρ, z) and ν = ν(ρ, z). Without loss of generality the coordinates can be chosen

such that

det G = −ρ2 . (2.2)

Then Einstein’s equations separate into two groups, one for the (D − 2) × (D − 2) matrix

G,

∂ρU + ∂zV = 0 , (2.3)

where

U = ρ (∂ρG)G−1 , V = ρ (∂zG)G−1 , (2.4)

and the other for the metric factor e2ν ,

∂ρν =
1

2

[

−1

ρ
+

1

4ρ
Tr(U2 − V 2)

]

, ∂zν =
1

4ρ
Tr(UV ) . (2.5)

The equations (2.5) for ν satisfy the integrability condition ∂ρ∂zν = ∂z∂ρν as a consequence

of (2.3). Hence, once a solution Gij(ρ, z) to (2.3) is found, one can determine ν(ρ, z) by

direct integration.

The matrix equations (2.2) and (2.3) form a completely integrable system, meaning

that one can find a set of spectral equations (a “Lax pair” or “L-A pair”) whose compat-

ibility conditions are exactly (2.2) and (2.3). The spectral equations for (2.2) and (2.3)

are

D1Ψ =
ρV − λU

λ2 + ρ2
Ψ , D2Ψ =

ρU + λV

λ2 + ρ2
Ψ , (2.6)

with commuting differential operators D1 and D2 given by

D1 = ∂z −
2λ2

λ2 + ρ2
∂λ , D2 = ∂ρ +

2λρ

λ2 + ρ2
∂λ , (2.7)

The complex spectral parameter λ is independent of ρ and z, and the generating function

Ψ(λ, ρ, z) is a (D − 2) × (D − 2) matrix such that Ψ(0, ρ, z) = G(ρ, z).

The linearity of (2.6) allows algebraic construction of new solutions from known solu-

tions based on the “dressing method”. Given a known “seed” solution G0, one constructs

– 5 –



J
H
E
P
0
5
(
2
0
0
7
)
0
5
0

the corresponding matrices U0 and V0 in (2.4), and determines a generating matrix Ψ0

which solves (2.6) with U0 and V0. Then one seeks a new solution of the form

Ψ = χΨ0 , (2.8)

where χ = χ(λ, ρ, z) is the dressing matrix. Inserting (2.8) into (2.6) now gives a set of

equations for χ. The matrix χ is further constrained by requiring that the new metric

G = Ψ(λ = 0, ρ, z) is real and symmetric.

We are here interested in so-called “n-soliton” dressing matrices, which are charac-

terized by having n simple poles in the complex λ-plane, and we further restrict to cases

where the poles are located on the real axis; this determines the location of the poles to

be [18 – 20]

µ̃k = ±
√

ρ2 + (z − ak)2 − (z − ak) , (2.9)

where ak are n real constants. We refer to the “+” pole as a soliton and denote it by µk,

while the “−” pole is an anti-soliton denoted by µ̄k. Note µkµ̄k = −ρ2.

In addition to the n real constants ak, an n-soliton transformation is determined by n

arbitrary constant real (D − 2)-component vectors m
(k)
0 , which we shall refer to as the BZ

vectors. The components of these vectors will be called BZ parameters. In our applications,

the BZ vectors control the addition of angular momentum to a static seed solution.

Given a seed solution G0, the n-soliton transformation yields a new solution G with

components

Gab = (G0)ab −
n

∑

k,l=1

(G0)ac m
(k)
c (Γ−1)kl m

(l)
d (G0)db

µ̃kµ̃l
. (2.10)

(Repeated spacetime indices a, b, c, d = 1, . . . ,D − 2 are summed.) The components of the

vectors m(k) are

m(k)
a = m

(k)
0b

[

Ψ−1
0 (µ̃k, ρ, z)

]

ba
, (2.11)

where Ψ0 is the generating matrix which solves (2.6) with U0 and V0 determined by G0 as

in (2.4), and m
(k)
0b are the BZ parameters.

The symmetric matrix Γ is defined as

Γkl =
m

(k)
a (G0)ab m

(l)
b

ρ2 + µ̃kµ̃l
, (2.12)

and the inverse Γ−1 of Γ appears in (2.10).

The new matrix G of (2.10) does not obey (2.2); instead, an n-soliton transformation

gives

detG = (−1)nρ2n

(

n
∏

k=1

µ̃ −2
k

)

detG0 , (2.13)

with detG0 = −ρ2. One can deal with this problem and obtain a physical solution G(ph)

such that detG(ph) = −ρ2, by multiplying G by a suitable factor of ρ and µ̃k’s. In four

spacetime dimensions, this method of uniform renormalization works well and allows one

to construct for instance (multi)Kerr-NUT solutions from just flat Minkowski space. In
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higher dimensions, however, uniform renormalization typically leads to nakedly singular

solutions.

One way around this problem is to restrict the soliton transformation to a 2× 2 block

of the seed solution and perform uniform renormalization on this block. This has been

applied to reproduce black ring solutions with a single angular momentum [23, 26]. The

drawback of this method is clearly that it can only produce solutions with rotation in at

most a single plane. This would be sufficient for our purposes here, but we prefer to present

the solution generating method in a more general setting so as to facilitate generalization

of our black saturn solution to include angular momentum in two independent planes. We

therefore follow the strategy of [21] which is applicable in any spacetime dimension and

does not suffer from the above-mentioned limitations.

The idea is to note that the factor multiplying det G0 in (2.13) is independent of the

BZ vectors m
(k)
0 . Start with a diagonal seed solution (G0, e

2ν0) and remove first solitons

with trivial BZ parameters (so as to not introduce any off-diagonal components in the

matrix G). Then add back the same solitons but now with general BZ parameters. The

resulting solution G satisfies det G = −ρ2 by construction. Moreover, the metric factor e2ν

of the full solution can easily be obtained from the seed G0 as [21]

e2ν = e2ν0
det Γkl

det Γ
(0)
kl

, (2.14)

where Γ(0) and Γ are constructed as in (2.12) using G0 and G, respectively.

We now turn from the general discussion to the construction of the black saturn solu-

tion.

2.2 Seed and soliton transformation for black saturn

For the analysis of axisymmetric solutions we make use of the results of [29, 30]. We refer to

these papers for general discussions of higher-dimensional Weyl solutions and the analysis

of the corresponding rod configurations.

The rod configuration for the seed of black saturn is shown in figure 1. The thick solid

black lines correspond to rod sources of uniform density +1/2, whereas the dashed line

segment corresponds to a rod source of uniform negative density −1/2. The rods in the

t direction correspond to black hole horizons. Note that for a1 = a5 the negative rod is

eliminated and the solution describes a static black ring around an S3 black hole. This

is an unbalanced configuration with a conically singular membrane keeping the black ring

and the S3 black hole apart. The negative density rod is included in order to facilitate

adding angular momentum to the black ring.

Using the techniques of [29] we construct the full 4+1-dimensional vacuum solution

corresponding to the rod configuration in figure 1. We find

G0 = diag

{

−µ1 µ3

µ2 µ4
,

ρ2 µ4

µ5 µ3
,

µ5 µ2

µ1

}

, detG0 = −ρ2 . (2.15)
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t

φ

ψ

a1 a5 a4 a3 a2

Figure 1: Sources for the seed metric G0. The solid rods have positive density and the dashed

rod has negative density. The rods are located at the z-axis with ρ = 0 and add up to an infinite

rod with uniform density such that detG0 = −ρ2. The labeling of the rod endpoints is a little

untraditional, but is simply motivated by the fact that we are going to use the inverse scattering

method to add solitons at z = a1, a2 and a3.

The first term in G0 corresponds to the tt-component, the second to the φφ-component

and the third to the ψψ-component. The µi are “solitons” as introduced in (2.9), i.e.

µi =
√

ρ2 + (z − ai)2 − (z − ai) , (2.16)

where the ai are the rod endpoints in figure 1. The metric factor e2ν of the seed can written

e2ν = k2 µ2 µ5(ρ
2+µ1 µ2)

2(ρ2+µ1 µ4)(ρ
2+µ1 µ5)(ρ

2+µ2µ3)(ρ
2+µ3 µ4)

2(ρ2+µ4 µ5)

µ1(ρ2 + µ3µ5)(ρ2 + µ1 µ3)(ρ2 + µ2 µ4)(ρ2 + µ2 µ5)
∏5

i=1(ρ
2 + µ2

i )
. (2.17)

The integration constant k will be fixed in section 3.3 for the full black saturn solution.

We assume the ordering

a1 ≤ a5 ≤ a4 ≤ a3 ≤ a2 (2.18)

of the rod endpoints.2

The solution (2.15) and (2.17) with the ordering (2.18) is singular and not in itself of

physical interest. However, with a 1-soliton transformation we add an anti-soliton which

mixes the t and ψ directions in such a way that the negative density rod moves to the t-

direction and cancels the segment [a1, a5] of the positive density rod. It turns out that this

leaves a naked singularity at z = a1, but choosing the BZ vector appropriately completely

eliminates that singularity (see section 3.2). Taking a2 = a3 in the seed solution, this

1-soliton transformation gives the S1 rotating black ring of [8]. We show this explicitly in

appendix A.2.

Keeping a3 < a2, the above sketched 1-soliton transformation gives a rotating black

ring around an S3 black hole. This configuration can be balanced and we study its physical

properties in detail in section 4.3. Including two more soliton transformations allow us to

give the S3 black hole independent rotation in two planes. The steps of generating the

black saturn solution by a 3-soliton transformations are as follows:

2If instead we had chosen the different ordering a5 ≤ a1 ≤ a4 ≤ a3 ≤ a2, then there would have been no

negative density rod, and the solution (2.15) and (2.17) would describe two S3 black holes and two conical

singularities, one for each of the two finite rods in the angular directions. We will not use this ordering, but

always take the rod endpoints to satisfy (2.18).
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1. Perform the following three 1-soliton transformations on the seed solution (2.15):

• Remove an anti-soliton at z = a1 with trivial BZ vector (1,0,0); this is equivalent

to dividing (G0)tt by −ρ2/µ̄2
1 = −µ2

1/ρ
2.

• Remove a soliton at z = a2 with trivial BZ vector (1,0,0); this is equivalent to

dividing (G0)tt by
(

−ρ2/µ2
2

)

.

• Remove an anti-soliton at z = a3 with trivial BZ vector (1,0,0); this is equivalent

to dividing (G0)tt by −ρ2/µ̄2
3 = −µ2

3/ρ
2.

The result is the metric matrix

G′
0 = diag

{

ρ2µ2

µ1µ3µ4
,
ρ2µ4

µ3µ5
,
µ2µ5

µ1

}

. (2.19)

2. Rescale G′
0 by a factor of µ1µ3

ρ2µ2
to find

G̃0 =
µ1µ3

ρ2µ2
G′

0 = diag

{

1

µ4
,
µ1µ4

µ2µ5
,−µ3

µ̄5

}

, (2.20)

where µ̄5 = −ρ2/µ5. This will be the seed for the next soliton transformation.

3. The generating matrix

Ψ̃0(λ, ρ, z) = diag

{

1

(µ4 − λ)
,
(µ1 − λ)(µ4 − λ)

(µ2 − λ)(µ5 − λ)
,−(µ3 − λ)

(µ̄5 − λ)

}

(2.21)

solves (2.6) with G̃0. Note Ψ̃(0, ρ, z) = G̃0.

4. Perform now a 3-soliton transformation with G̃0 as seed:

• Add an anti-soliton at z = a1 (pole at λ = µ̄1) with BZ vector m
(1)
0 = (1, 0, c1),

• Add a soliton at z = a2 (pole at λ = µ2) with BZ vector m
(2)
0 = (1, 0, c2), and

• Add an anti-soliton at z = a3 (pole at λ = µ̄3) with BZ vector m
(3)
0 = (1, b3, 0).

Denote the resulting metric G̃. The constants c1, c2, and b3 are the BZ parameters

of the transformation.

5. Rescale G̃ to find

G =
ρ2µ2

µ1µ3
G̃ . (2.22)

This is needed to undo the rescaling of step 2, so that detG = −ρ2.

6. Construct e2ν using (2.14). Note that Γ was found in the process of constructing G

and that Γ0 = Γ
∣

∣

c1=c2=b3=0
. The result (G, e2ν) is the solution we want.

– 9 –
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Some comments are in order. First, the rescaling in step 2 is simply a choice of

convenience that yields a simple form for the generating matrix Ψ̃0. Secondly, with c1 =

c2 = b3 = 0, the effect of the 3-soliton transformation in step 4 is simply to undo the

transformation of step 1. Since (2.13) is independent of the BZ parameters c1, c2 and b3,

we are guaranteed to have detG = det G0 = −ρ2, after step 5 has undone the rescaling of

step 2. Finally, in step 4 we could have added the (anti-)solitons with general BZ vectors

m
(k)
0 = (a(k), b(k), c(k)) for k = 1, 2, 3. However, b(k) 6= 0, k = 1, 2, or c(3) 6= 0 lead to

irremovable singularities and we therefore set b(1) = b(2) = c(3) = 0. Finally, the solution is

invariant under rescalings of the BZ vectors, m
(k)
0 → σk m

(k)
0 (no sum on k) for any nonzero

σk, and we use the scaling freedom to set a(k) = 1 without loss of generality.

In this paper we focus entirely on the black saturn solution with angular momentum

only in a single plane, so we set b3 = 0 in the following. The more general solution with

b3 6= 0 remains to be analyzed.

2-soliton transformation

With b3 = 0 the transformation described above is essentially a 2-soliton transformation.

In fact, the saturn solution with b3 = 0 can be produced by a 2-soliton transformation

in much the same way as above. The resulting metric takes a slightly different form, but

can be shown, using the explicit form of the µi’s in (2.16), to be identical to the metric

resulting from the 3-soliton transformation after a constant rescaling of the BZ parameters

c1 and c2.

2.3 Saturn solution

The black saturn solution constructed by the above 3-soliton transformation with b3 = 0

can be written3

ds2 = −Hy

Hx

[

dt +

(

ωψ

Hy
+ q

)

dψ

]2

+ Hx

{

k2 P
(

dρ2 + dz2
)

+
Gy

Hy
dψ2 +

Gx

Hx
dφ2

}

. (2.23)

For convenience we have chosen to write e2ν = k2 Hx P . Here k is the integration constant

for the metric factor e2ν0 given in (2.17), and Gx,y, Hx,y, and P are functions of ρ and

z which will be given below. The constant q is included in order to ensure asymptotic

flatness (we determine the value of q in the analysis of section 3.3).

With b3 = 0, our soliton transformations leave the φφ-part of the metric invariant, so

from the static seed (2.15) we have

Gx = (G0)φφ =
ρ2µ4

µ3 µ5
. (2.24)

The metric (2.23) involves the functions

P = (µ3 µ4 + ρ2)2(µ1 µ5 + ρ2)(µ4 µ5 + ρ2) , (2.25)

3After performing the BZ transformation, we shift t as t → t−q ψ in order to ensure asymptotic flatness.

At this point ψ is not assumed to be periodic so the shift does not effect the global structure of the solution.

The periodicities of ψ and φ will be fixed in section 3. We have also reversed the sense of rotation by taking

ψ → −ψ.
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and

Hx = F−1

[

M0 + c2
1 M1 + c2

2 M2 + c1 c2 M3 + c2
1c

2
2 M4

]

, (2.26)

Hy = F−1 µ3

µ4

[

M0
µ1

µ2
− c2

1 M1
ρ2

µ1 µ2
− c2

2 M2
µ1 µ2

ρ2
+ c1 c2 M3 + c2

1c
2
2 M4

µ2

µ1

]

, (2.27)

where

M0 = µ2 µ2
5(µ1 − µ3)

2(µ2 − µ4)
2(ρ2 + µ1 µ2)

2(ρ2 + µ1 µ4)
2(ρ2 + µ2 µ3)

2 , (2.28)

M1 = µ2
1 µ2 µ3 µ4 µ5 ρ2 (µ1 − µ2)

2(µ2 − µ4)
2(µ1 − µ5)

2(ρ2 + µ2 µ3)
2 , (2.29)

M2 = µ2 µ3 µ4 µ5 ρ2 (µ1 − µ2)
2(µ1 − µ3)

2(ρ2 + µ1 µ4)
2(ρ2 + µ2 µ5)

2 , (2.30)

M3 = 2µ1µ2 µ3 µ4 µ5 (µ1 − µ3)(µ1 − µ5)(µ2 − µ4)(ρ
2 + µ2

1)(ρ
2 + µ2

2)

×(ρ2 + µ1 µ4)(ρ
2 + µ2 µ3)(ρ

2 + µ2 µ5) , (2.31)

M4 = µ2
1 µ2 µ2

3 µ2
4 (µ1 − µ5)

2(ρ2 + µ1 µ2)
2(ρ2 + µ2 µ5)

2 , (2.32)

and

F = µ1 µ5 (µ1 − µ3)
2(µ2 − µ4)

2(ρ2 + µ1 µ3)(ρ
2 + µ2 µ3)(ρ

2 + µ1 µ4)

×(ρ2 + µ2 µ4)(ρ
2 + µ2 µ5)(ρ

2 + µ3 µ5)

5
∏

i=1

(ρ2 + µ2
i ) . (2.33)

Finally we have

Gy =
µ3 µ5

µ4
, (2.34)

and the off-diagonal part of the metric is given by

ωψ = 2
c1 R1

√
M0M1 − c2 R2

√
M0M2 + c2

1 c2 R2

√
M1M4 − c1 c2

2 R1

√
M2M4

F
√

Gx
. (2.35)

Here Ri =
√

ρ2 + (z − ai)2.

Setting c1 = c2 = 0 gives ωψ = 0 and GyHx/Hy = µ2 µ5/µ1 = (G0)ψψ . The full

solution can be seen to simply reduce to the seed solution (2.15) and (2.17) in this limit.

Taking c1 = 0 and then setting a1 = a5 = a4 we obtain the singly spinning Myers-

Perry black hole, which was constructed similarly in [21]. For details, see appendix A.1.

Taking instead c2 = 0 and then setting a2 = a3 we obtain the S1 spinning black ring of [8].

Appendix A.2 presents the explicit coordinate transformation from Weyl coordinates (ρ, z)

to ring coordinates (x, y). The black ring was obtained in [25] and [26] with a different

transformation which involved two solitons and started with a different seed metric. The

1-soliton transformation used here appears to be simpler.4

It is useful to note that the only effect of changing the signs of both BZ parameters c1

and c2, taking (c1, c2) → (−c1,−c2), is a change of sense of the overall direction of rotation,

i.e. the only effect is Gtψ → −Gtψ .

4We thank Roberto Emparan for sharing with us the idea of obtaining the S1-spinning black ring by a

1-soliton transformation.
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The metric (2.23) is sufficiently complicated that it is difficult to check algebraically

that the Einstein vacuum equations are solved. We have resorted to numerical methods in

order to check the vanishing of all components of the Ricci tensor.

Next we present an analysis of the main properties of the black saturn solution.

3. Analysis

We introduce a convenient parameterization of the solution, and then analyze the rod

structure. The BZ parameter c1 will be fixed in order to eliminate the singularity left-over

from the negative density rod of the seed solution. Next it is shown that the solution is

asymptotically flat. Regularity is analyzed and the balance condition obtained by elimi-

nation of a conical singularity. We analyze the horizon structure, and compute a number

of physical quantities for the solution: the ADM mass and angular momentum, as well as

angular velocities, temperatures and horizon areas of the two black holes. We compute the

Komar integrals for mass and angular momentum and obtain a Smarr relation. We study

various limits of the solution, and we comment on the analysis of closed timelike curves (of

which we find none).

3.1 Parameterization

The seed solution (2.15)-(2.17) contains five dimensionfull parameters, namely the rod

endpoints ai, i = 1, . . . , 5. Since the whole rod configuration can be shifted along the

z-axis without changing the solution, the description in terms of the ai’s is redundant; in

addition to the ordering (2.18) and the directions of the rods as given in figure 1 we only

need the lengths of the rods. It is useful to also take out the overall scale of the solution

so that the seed solution is described in terms of three dimensionless parameters and an

overall scale.

We choose the overall scale L to be5

L2 = a2 − a1 , (3.1)

and we introduce three dimensionless parameters κi as

κi =
ai+2 − a1

L2
, for i = 1, 2, 3 . (3.2)

As a consequence of the ordering (2.18), the κi’s satisfy

0 ≤ κ3 ≤ κ2 < κ1 ≤ 1 . (3.3)

(We exclude κ2 = κ1 for the balanced solution for reasons which will be apparent in

section 3.4.) We shift and scale the z coordinate accordingly: set

z = L2z̄ + a1 . (3.4)

5The coordinates ρ and z, and hence the rod endpoints ai, have dimensions (length)2.
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t

φ

ψ

t

φ

ψ

0 κ3 κ2 κ1 1 0 κ3 κ2 κ1 1

(1, 0,ΩBR

ψ
) (1, 0, ΩBH

ψ
)

(0, 1, 0) (0, 1, 0)

(0, 0, 1)

Figure 2(a) Figure 2(b)

Figure 2: Rod structure of the black saturn solution. Note that the rods are placed on the z̄-axis,

see section 3.2 for the definition of z̄. The dots in figure 2(a) denote singularities at z̄ = 0, which

are removed by the fixing c1 according to (3.7) (figure 2(b)). This choice makes the ρ = 0 metric

smooth across z̄ = 0. Figure 2(b) also shows the directions of the rods.

Then z̄ is dimensionless. As we shall see in the following, the black ring horizon is located

at ρ = 0 for z̄ ∈ [κ3, κ2], and the S3 black hole horizon at ρ = 0 for z̄ ∈ [κ1, 1].

The new parameterization effectively corresponds to taking

a1 → 0 , a5 → κ3 , a4 → κ2 , a3 → κ1 , a2 → 1 , (3.5)

while carefully keeping track of the scale L.

The soliton transformations introduce the two dimensionfull BZ parameters, c1 and

c2. It is convenient to redefine the BZ parameter c2 by introducing the dimensionless

parameter c̄2 as

c̄2 =
c2

c1(1 − κ2)
. (3.6)

With this parameterization many expressions for the physical parameters simplify.

3.2 Rod structure

The rod structure at ρ = 0 is illustrated in figure 2. Harmark [30] introduces the “direction”

of a given rod as the zero eigenvalue eigenvector of the metric matrix G at ρ = 0. The

direction of each rod is indicated in figure 2(b). To summarize:

• The semi-infinite rod z̄ ∈]−∞, κ3] and the finite rod [κ2, κ1] have directions (0, 1, 0),

i.e. they are sources for the φφ-part of the metric.

• The semi-infinite rod [1,∞[ has direction (0, 0, 1), i.e. it is sourcing the ψψ-part of

the metric.

• The finite rod [κ3, κ2] corresponds to the location of the black ring horizon. It has

direction (1, 0,ΩBR
ψ ). The finite rod [κ1, 1] corresponds to the location of the S3 black

hole horizon. It has direction (1, 0,ΩBH
ψ ). The angular velocities ΩBR

ψ and ΩBH
ψ will

be given in section 3.5.

Note that the negative density rod of the seed solution figure 1 is no longer present.

The soliton transformation which added the anti-soliton at z = a1 has made the +1/2 and
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−1/2 density rods in the t and ψ direction cancel. However, the cancellation of the rods

left a singularity at z = a1, i.e. z̄ = 0. This shows up as a (z − a1)
−1 ∼ z̄−1 divergence

in Gtt and Gψψ, as indicated by dots in figure 2(a). Luckily, the singularities are removed

completely by setting

|c1| = L

√

2κ1κ2

κ3
. (3.7)

With c1 fixed according to (3.7), the metric at ρ = 0 is completely smooth across z̄ = 0.

This means that we have succesfully removed the negative density rod at z̄ ∈ [0, κ3] (z ∈
[a1, a5]), and there is no longer any significance to the point z̄ = 0 (z = a1) in the metric,

as illustrated in figure 2(b).

The condition (3.7) will be imposed throughout the rest of the paper. Since (c1, c2) →
(−c1,−c2) just changes the overall direction of rotation, we choose c1 > 0 without loss of

generality.

3.3 Asymptotics

We introduce asymptotic coordinates (r, θ)

ρ =
1

2
r2 sin 2θ , z =

1

2
r2 cos 2θ , (3.8)

such that

dρ2 + dz2 = r2 (dr2 + r2dθ2) . (3.9)

The asymptotic limit is r2 = 2
√

ρ2 + z2 → ∞. Requiring that Gtψ → 0 when r → ∞
determines the constant q in the metric (2.23) to be

q = L

√

2κ1κ2

κ3

c̄2

1 + κ2 c̄2
. (3.10)

We have used the definition (3.6) of c̄2 and imposed (3.7) for c1.

To leading order, the asymptotic metric is

e2ν = k2
[

1 + κ2 c̄2

]2 1

r2
+ . . . , (3.11)

which motivates us to choose the constant k to be

k =
∣

∣

∣
1 + κ2 c̄2

∣

∣

∣

−1
. (3.12)

We shall assume6 that c̄2 6= −κ−1
2 . The asymptotic metric then takes the form

ds2 = −dt2 + dr2 + r2 dθ2 + r2 sin2 θ dψ2 + r2 cos2 θ dφ2 . (3.13)

Below we show that the angles ψ and φ have periodicities

∆ψ = ∆φ = 2π , (3.14)

so that the solution indeed is asymptotically flat.

6The solution with c̄2 = −κ−1

2
is nakedly singular. See sections 3.4 and 4.6 for further comments.
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3.4 Regularity and balance

In order to avoid a conical singularity at the location of a rod, the period ∆η of a spacelike

coordinate η(= ψ, φ) must be fixed as

∆η = 2π lim
ρ→0

√

ρ2e2ν

gηη
. (3.15)

Requiring regularity on the rod z̄ ∈ [1, ∞] fixes the period of ψ to be ∆ψ = 2π, and

regularity on the rod z̄ ∈ [−∞, κ3] determines ∆φ = 2π. We have used (3.7) and (3.12).7

According to the discussion in the previous section this ensures asymptotic flatness of the

solution.

Next we consider regularity as ρ → 0 for the finite rod z̄ ∈ [κ2, κ1]. Eq. (3.15) gives

∆φ = 2π
κ1 − κ2

∣

∣1 + κ2 c̄2

∣

∣

√

κ1(1 − κ2)(1 − κ3)(κ1 − κ3)
. (3.16)

When no constraints other than (3.7) are imposed, the metric has a conical singular mem-

brane in the plane of the ring, extending from the inner S1 radius of the black ring to the

horizon of the S3 black hole.

We can avoid this conical singularity and balance the solution by requiring the right

hand side of (3.16) to be equal to 2π. Solving for c̄2 this gives us the balancing, or

equilibrium, condition for black saturn, i.e.

c̄2 =
1

κ2

[

ǫ
κ1 − κ2

√

κ1(1 − κ2)(1 − κ3)(κ1 − κ3)
− 1

]

, with

{

ǫ = +1 when c̄2 > −κ−1
2

ǫ = −1 when c̄2 < −κ−1
2

.

(3.17)

The solution with c̄2 = −κ−1
2 is nakedly singular. Thus the choice of sign ǫ divides the

balanced black saturn solutions into two separate sectors. The limit of removing the S3

black hole to leave just the balanced black ring requires setting c̄2 = 0 and according to

(3.17) this is only possible for ǫ = +1. We are going to study the ǫ = +1 solutions in detail

in section 4, but will also discuss some properties of the ǫ = −1 solutions (see sections 3.7

and 4.6).

3.5 Horizons

The rod analysis of section 3.2 showed that the two horizon rods had directions (1, 0,Ωi
ψ),

i = BR,BH, for the black ring and the S3 black hole. Equivalently, the Killing vectors

ξ = ∂t + Ωi
ψ∂ψ are null on the respective horizons. The angular velocities Ωi

ψ are

ΩBH
ψ =

1

L

[

1 + κ2 c̄2

]

√

κ2κ3

2κ1

κ3(1 − κ1) − κ1(1 − κ2)(1 − κ3)c̄2

κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3)c̄2
2

, (3.18)

ΩBR
ψ =

1

L

[

1 + κ2 c̄2

]

√

κ1κ3

2κ2

κ3 − κ2(1 − κ3)c̄2

κ3 − κ3(κ1 − κ2)c̄2 + κ1κ2(1 − κ3)c̄2
2

. (3.19)

The black ring and the S3 black hole generally have different angular velocities.

7If we had not imposed the condition (3.7), which removes the singularity at z̄ = 0, then (3.15) would

have given ∆φ = π

L

q

2κ3

κ1κ2
c1 for z̄ ∈ [0, κ3]. Requiring ∆φ = 2π is precisely the condition (3.7).
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Myers-Perry black hole horizon geometry

One black hole horizon is located at ρ = 0 for κ1 ≤ z̄ ≤ 1 and the metric on a spatial

cross-section of the horizon can be written

ds2
BH =

2L2(z̄−κ1)(z̄−κ3)

(z̄−κ2)
dφ2+L2s2

BH g(z̄)(1 − z̄) dψ2+
L2 (z̄−κ2)dz̄2

(1−z̄)(z̄−κ1)(z̄−κ3)g(z̄)
, (3.20)

where the constant sBH is

sBH =
κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3)c̄

2
2

κ3

√

(1 − κ1)(1 − κ2)(1 − κ3)
[

1 + κ2c̄2

]2 , (3.21)

and the function g(z̄) is

g(z̄) = 2κ1κ3(1 − κ1)(1 − κ2)(1 − κ3)(z̄ − κ2)

×
[

1 + κ2c̄2

]2
[

(1 − κ1)
2κ3

[

κ1(z̄ − κ2) − κ3

(

κ1 − κ2(1 − z̄)2 − κ1κ2(2 − z̄)
)]

+2κ1κ2κ3(1 − κ1)(1 − κ2)(1 − κ3)(1 − z̄)(z̄ − κ1) c̄2

+κ2
1κ2(1 − κ2)

2(1 − κ3)
2 z̄ (z̄ − κ1) c̄2

2

]−1

. (3.22)

Note that sBH ≥ 0. One can check that g(z̄) is positive for κ1 ≤ z̄ ≤ 1, so for sBH > 0, the

horizon is topologically an S3. Metrically the S3 is distorted by rotation, as is the case for

a Myers-Perry black hole, and here the horizon is further deformed by the presence of the

black ring.

Black ring horizon geometry

The black ring horizon is located at ρ = 0 for κ3 ≤ z̄ ≤ κ2. The metric of a spatial cross

section of the horizon can be written

ds2
BR =

2L2(κ2 − z̄)(z̄ − κ3)

(κ1 − z̄)
dφ2 + L2s2

BR f(z̄)(κ1 − z̄) dψ2 +
L2dz̄2

(κ2 − z̄)(z̄ − κ3)f(z̄)
,(3.23)

where the constant sBR is

sBR =

√

κ2 − κ3

κ1(κ1 − κ3)(1 − κ3)

(

κ3 − κ3(κ1 − κ2)c̄2 + κ1κ2(1 − κ3)c̄
2
2

)

κ3 [1 + κ2c̄2]
2 , (3.24)

and the function f(z̄) is

f(z̄) = 2κ1κ3(κ1 − κ3)(1 − κ3)(1 − z̄)

×
[

1 + κ2c̄2

]2
(κ2 − κ3)

−1

[

κ3

[

κ2(κ1 − z̄) + κ3

(

κ2

(

1 − κ1(2 − z̄)
)

− κ1(1 − z̄)2
)]

+2κ1κ2κ3(1 − κ3)(1 − z̄)(κ2 − z̄)c̄2

+κ1κ
2
2(1 − κ3)

2z̄(κ2 − z̄)c̄2
2

]−1

. (3.25)

It follows from (3.3) that sBR ≥ 0, and it can be checked that f(z̄) is positive for κ3 ≤ z̄ ≤
κ2. The coordinate ψ parametrizes a circle whose radius depends on z̄. The coordinates
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(z̄, φ) parameterize a deformed two-sphere. The topology of the horizon is therefore S1×S2.

As is the case for the black ring [8, 9], the metric of the horizon is not a direct product of

the S1 ×S2 (contrary to the supersymmetric case [31 – 33, 15]). For black saturn the black

ring horizon is further distorted by the presence of the S3 black hole.

Horizon areas

It is straightforward to compute the horizon areas. We find

ABH = 4L3π2

√

2(1 − κ1)3

(1 − κ2)(1 − κ3)

1 + κ1κ2(1−κ2)(1−κ3)
κ3(1−κ1) c̄2

2
(

1 + κ2 c̄2

)2 , (3.26)

ABR = 4L3π2

√

2κ2(κ2 − κ3)3

κ1(κ1 − κ3)(1 − κ3)

1 − (κ1 − κ2)c̄2 + κ1κ2(1−κ3)
κ3

c̄2
2

(

1 + κ2 c̄2

)2 . (3.27)

Note that for all real c̄2 and 0 < κ3 < κ2 < κ1 < 1, the expressions for the horizon areas

are real and positive, hence well-defined. In particular, there are no signs of closed timelike

curves.

Temperatures

We compute the temperatures using [30] and find

TBH
H =

1

2Lπ

√

(1 − κ2)(1 − κ3)

2(1 − κ1)

(

1 + κ2 c̄2

)2

1 + κ1κ2(1−κ2)(1−κ3)
κ3(1−κ1) c̄2

2

, (3.28)

TBR
H =

1

2Lπ

√

κ1(1 − κ3)(κ1 − κ3)

2κ2(κ2 − κ3)

(

1 + κ2 c̄2

)2

1 − (κ1 − κ2)c̄2 + κ1κ2(1−κ3)
κ3

c̄2
2

.

The ordering (3.3) ensures that the temperatures are non-negative.

The expressions for the temperatures are complimentary to those for the horizon areas

(3.26)-(3.27): with the entropy being one quarter times the horizon area, S = A/(4G), we

have two very simple expressions:

TBH
H SBH =

π

2G
L2(1 − κ1) , TBR

H SBR =
π

2G
L2(κ2 − κ3) . (3.29)

The former vanishes in the limit κ1 → 1 which gives an extremal rotating S3 black hole.

The latter vanishes when κ2 = κ3, which we interpret as the limit where the black ring

becomes singular, as the j = 1 limit of the fat black rings.

3.6 ADM mass and angular momentum

The solution is asymptotically flat and it is straightforward to compute the ADM mass M

and angular momentum J using the asymptotic coordinates introduced in section 3.3. We

find

M =
3π L2

4G

κ3(1 − κ1 + κ2) − 2κ2κ3(κ1 − κ2)c̄2 + κ2

[

κ1 − κ2κ3(1 + κ1 − κ2)
]

c̄2
2

κ3

[

1 + κ2c̄2

]2 (3.30)
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and

J =
π L3

G

1

κ3

[

1 + κ2c̄2

]3

√

κ2

2κ1κ3

[

κ2
3 − c̄2κ3

[

(κ1 − κ2)(1 − κ1 + κ3) + κ2(1 − κ3)
]

+c̄2
2κ2κ3

[

(κ1 − κ2)(κ1 − κ3) + κ1(1 + κ1 − κ2 − κ3)
]

−c̄3
2κ1κ2

[

κ1 − κ2κ3(2 + κ1 − κ2 − κ3)
]

]

. (3.31)

It is worth noting that for any c̄2 ∈ R the ADM mass (3.30) is positive as a simple

consequence of the ordering (3.3).

3.7 Komar integrals

Komar integrals evaluated on the horizon of each black hole allow us to compute a measure

of the mass and angular momentum of the two objects of the saturn system.

Komar masses

In five spacetime dimensions, the Komar mass is given by

MKomar =
3

32πG

∫

S
∗dξ , (3.32)

where ξ is the dual 1-form associated to the asymptotic time translation Killing field ∂t and

S is the boundary of any spacelike hypersurface. Eq. (3.32) measures the mass contained

in S, so the mass of each black hole in a multi-black hole spacetime is computed by taking

S to be at the horizon Hi. Instead, if we take S to be the S3 at infinity, then (3.32) gives

the total mass of the system, which coincides with the ADM mass. In terms of the metric

components we have

M i
Komar =

3

32πG

∫

Hi

dz dφ dψ
1√

−det g
gzzgφφ

[

− gψψ ∂ρgtt + gtψ ∂ρgtψ

]

, (3.33)

which for the saturn solution gives

MBH
Komar =

3πL2

4G

κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3) c̄2
2

κ3(1 + c̄2 κ2)
, (3.34)

MBR
Komar =

3πL2

4G

κ2

[

1 − (1 − κ2) c̄2

][

κ3 − κ3(κ1 − κ2) c̄2 + κ1κ2(1 − κ3) c̄2
2

]

κ3(1 + c̄2 κ2)2
. (3.35)

Note that (3.34)-(3.35) give

MADM = MBR
Komar + MBH

Komar , (3.36)

so the Komar masses add up to the ADM mass (3.30), even in the presence of the conical

singularity. We discuss the sign of the Komar masses at the end of this subsection.
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Komar angular momenta

The angular momentum Komar integral is given by

JKomar =
1

16πG

∫

S
∗dζ , (3.37)

where ζ is the 1-form dual to the Killing field ∂ψ, and S is the boundary of any space-

like hypersurface. Now (3.37) measures the angular momentum contained within S, and

therefore, if we choose S to be the horizons Hi, we can compute the “intrinsic” angular

momentum of each black object. We have

J i
Komar =

1

16πG

∫

Hi

dz dφ dψ
1√

−det g
gzzgφφ

[

− gψψ ∂ρgtψ + gtψ ∂ρgψψ

]

, (3.38)

which gives

JBH
Komar = −πL3

G

√

κ1κ2

2κ3

c̄2

[

κ3(1 − κ1) + κ1κ2(1 − κ2)(1 − κ3) c̄2
2

]

κ3(1 + c̄2 κ2)2
, (3.39)

JBR
Komar =

πL3

G

√

κ2

2κ1κ3
(3.40)

×
[

κ3−κ2(κ1 − κ3) c̄2+κ1κ2(1 − κ2) c̄2
2

][

κ3 − κ3(κ1 − κ2) c̄2+κ1κ2(1 − κ3) c̄2
2

]

κ3(1 + c̄2 κ2)3
.

The Komar angular momenta add to up to JADM given in (3.31),

JADM = JBR
Komar + JBH

Komar , (3.41)

even without imposing the balance condition (3.17).

We shall refer to the Komar angular momentum as the “intrinsic” angular momentum

of the black hole. Note that for c̄2 = 0, the S3 black hole carries no intrinsic spin JBH
Komar = 0.

This was expected since the soliton transformation with c2 = 0 did not add spin to the S3

black hole directly.

Smarr relations

Black rings [8] and Myers-Perry black holes [11] satisfy the same Smarr formula

2

3
M = THS + J Ω . (3.42)

Using the expressions of the Komar masses (3.34)-(3.35) and the Komar angular momenta

(3.39)-(3.40) we find that both the black ring and the black hole separately obey this Smarr

relation:

2

3
MBR

Komar = TBR
H SBR + ΩBR

ψ JBR
Komar ,

2

3
MBH

Komar = TBH
H SBH + ΩBH

ψ JBH
Komar . (3.43)

These Smarr relations are mathematical identities which relates the physical quantities

measured at the horizon, and they can be derived quite generally for multi-black hole

vacuum spacetimes [14]. The relations (3.43) hold without imposing the balance condition

(3.17).
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Sign of Komar masses

We have already noted that the total ADM mass (3.30) is always positive. Positivity of

MBH
Komar in (3.34) requires that c̄2 > −κ−1

2 , and this selects the ǫ = +1 case of the balance

condition in section 3.4. Furthermore, imposing the balance condition (3.17) with ǫ = +1

implies that c̄2 takes values −κ−1
2 < c̄2 < (1 − κ2)

−1, and thus both MBH
Komar in (3.34) and

MBR
Komar in (3.35) are positive.

On the other hand, imposing the balance condition (3.17) with ǫ = −1 means that

c̄2 < −κ−1
2 , and — as can be seen from (3.34)-(3.35) — this gives MBH

Komar < 0 while

MBR
Komar > 0.

One might take as a criterium for establishing the physical relevance of a multi-black

hole system that each of the components in the system has positive mass. Clearly, at large

separations the Komar mass of each object should agree with the positive ADM mass of

the object, but that does not imply that the Komar masses in tightly bound gravitational

systems need to be positive.8 How, physically, can a solution with negative Komar mass

occur?

It follows from the Smarr relation (3.43) that the Komar mass can be negative provided

that the angular velocity Ω and Komar angular momentum JKomar have opposite signs and

that ΩJKomar is sufficiently large and negative to overwhelm the positive THS-term. In

black saturn, the physical mechanism behind opposite signs of ΩBH and JBH
Komar is rotational

frame-dragging: the rotating black ring drags the S3 black hole so that its horizon is

spinning in the opposite direction of its “intrinsic” angular momentum. We examine this

effect in detail in section 4.3. In that section we focus on solutions with c̄2 = 0, hence

ǫ = +1, and these have JBH
Komar = 0; however, that analysis also serves to illustrate the

physics which lies behind having ΩBHJBH
Komar < 0.

In conclusion, the solutions with MBH
Komar > 0 (ǫ = +1) and MBH

Komar < 0 (ǫ = −1)

appear to be equally valid. We shall primarily focus on the MBH
Komar > 0 solutions when we

study the physics of black saturn in section 4, but we comment briefly on the MBH
Komar < 0

solutions in section 4.6.

Finally, let us remark that single black hole spacetimes with counter-rotation (in the

sense of ΩJ < 0) and negative Komar mass, but positive ADM mass, have been constructed

numerically as solutions of five-dimensional Einstein-Maxwell theory with a Chern-Simons

term [34]. In that case, part of the energy and angular momentum is carried by the

electromagnetic fields making counter-rotation and negative Komar mass possible.

3.8 Closed timelike curves

One might expect the plane of the ring to be a natural place for closed timelike curves

(CTCs) to appear, and we have focused our analysis on this region. For the case c̄2 = 0,

we find analytically that Gψψ > 0 for ρ = 0 and z < κ3 (the plane outside the ring) and

κ2 < z < κ1 (the plane between the ring and the black hole). So for c̄2 = 0 there are no

CTCs in the plane of the ring (cf. [35]).

8We thank Roberto Emparan for discussions about this point, and also Harvey Reall for helpful com-

ments.
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When c̄2 6= 0 the metric components are sufficiently complicated that we resort to

numerical checks. We have performed such checks for examples where the S3 black hole

and the black ring are counter-rotating as well as co-rotating. Among other examples we

have checked the counter-rotating cases with J = 0; no CTCs were found.

CTCs tend to appear when solutions are over-spinning, at least that is the case for

supersymmetric black holes [36, 31 – 33, 15]. Hence we have checked in detail cases where

the black hole and the ring are co-rotating and fast spinning. One such example is studied

in section 4.4.2. For this 1-parameter family of solutions the S3 black hole angular velocity

covers a large range of co- and counter-rotation; we have checked numerically for CTCs in

the plane of the ring and found none.

While we have found no signs of the appearance of closed timelike curves in our analysis,

we emphasize that our numerical checks are not exhaustive. Rewriting the solution in ring

coordinates (x, y) will probably be helpful for checking for CTCs.

3.9 Limits

Black saturn combines a singly spinning Myers-Perry spherical black hole with a black ring

in a balanced configuration, and it is possible to obtain either of these solutions as limits of

the balanced black saturn solution with ǫ = +1. We describe here the appropriate limits,

while details are relegated to the appendix.

Myers-Perry black hole limit

In the general solution, one can remove the black ring by first setting the BZ parameter

c1 = 0, thus eliminating the black ring spin, and then removing the black ring rod by

taking κ2 = κ3 = 0. For the physical solution, where the singularity at z̄ = 0 has been

removed, c1 is fixed by (3.7) and we have to take the limit κ2, κ3 → 0, in such a way that

c1 remains finite. This can be accomplished by first taking κ2 → κ3 and then κ3 → 0. We

provide details of this limit in appendix A.1.

Black ring limit

The black ring [8] is obtained by simply removing the S3 black hole from the saturn

configuration. This is done by first setting the angular momentum of the black hole to

zero by taking c̄2 = 0, and then setting κ1 = 1, which removes the S3 black hole. We show

in appendix A.2 that the remaining solution is exactly the black ring of [8] by rewriting

the solution explicitly in ring coordinates x, y. The balance condition (3.17) becomes the

familiar equilibrium condition for a single black ring.

No merger limit

It would be interesting if one could use the black saturn system to study a controlled merger

of the S3 black hole and the black ring. Unfortunately, this is not possible. Based on the

rod configuration given in figure 2(b), the merger should correspond to merging the two

horizon rods, [κ3, κ2] of the black ring and [κ1, 1] of the S3 black hole. Thus the merger

would correspond to taking κ1 → κ2. Imposing the balance condition (3.17), κ1 → κ2

implies c̄2 → −κ−1
2 . The solution with c̄2 = −κ−1

2 is nakedly singular, and hence the
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suggested merger limit is singular. As a side remark, we point out that the singular nature

of the merger limit is in fact very similar to why two balanced Kaluza-Klein black holes

held apart by a static bubble-of-nothing cannot be merged by taking a similar limit [37].

4. Physics of black saturn

We examine a selection of interesting physical properties of black saturn. In section 4.1

we establish that black saturn has 2-fold continuous non-uniqueness. Section 4.2 reviews

basic properties of the Myers-Perry black hole and the black ring; properties which will be

helpful for understanding the physics of black saturn.

It is useful to clarify notions of rotation and intrinsic spin:

• A black hole is rotating when its angular velocity Ωi is nonzero.

• Co(counter)-rotation means ΩBH and ΩBR have the same (opposite) sign.

• We use the term intrinsic angular momentum to refer to the angular momentum

JKomar measured by the Komar integral evaluated at the horizon of the black hole.

The two black objects in black saturn interact gravitationally, and one effect is frame-

dragging. This is cleanly illustrated for the case where the S3 black hole has vanishing

intrinsic angular momentum, JBH
Komar = 0, but is nonetheless rotating, ΩBH 6= 0. We found

in section 3.7 that JBH
Komar = 0 for c̄2 = 0, so in section 4.3 we study the c̄2 = 0 subfamily

of black saturn configurations.

The general black saturn configurations with c̄2 6= 0 are studied in sections 4.4 and 4.5.

For c̄2 6= 0 the S3 black hole and the black ring have independent rotation parameters, and

this makes it possible to have counter-rotating solutions and configurations with vanishing

total angular momentum, J = 0. Having c̄2 6= 0 is also necessary for realizing the full

2-fold continuous non-uniqueness.

Note that we are imposing the balance condition (3.4) with ǫ = +1 throughout this

section, with the exception of subsection 4.6.

4.1 Parameter counting and non-uniqueness

We begin by counting the parameters in the saturn solution. The full solution has six para-

meters: κ1,2,3, satisfying 0 ≤ κ3 ≤ κ2 < κ1 ≤ 1, one scale L, and the two BZ parameters c1

and c2. The parameter c1 is fixed according to (3.7) in order to avoid a naked singularity

at z̄ = 0. We conveniently rescaled c2 to introduce the dimensionless parameter c̄2 ∝ c2

in (3.6). So the unbalanced solution has four dimensionless parameters, κ1,2,3 and c̄2, and

the scale L. The balance condition (3.17) imposes a constraint between c̄2 and κ1,2,3, and

in conclusion, the balanced black saturn solution has three dimensionless parameters and

one scale L.

Fixing the ADM mass M of the full system fixes the scale L, and leaves three dimen-

sionless parameters. Fixing further the only other conserved asymptotic quantity, namely

the angular momentum J , leaves two free dimensionless parameters. Thus black saturn

has 2-fold continuous non-uniqueness. We examine the non-uniqueness in greater detail in

the following sections.
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Figure 3(a) Figure 3(b) Figure 3(c)

Figure 3: Behavior of the reduced physical parameters for the Myers-Perry black hole (light gray)

and the black ring (dark gray). Note that we are using a logarithmic scale for the temperature.

Fixed mass reduced parameters

We introduce the fixed mass reduced parameters

j2 =
27π

32G

J2

M3
, ai

H =
3

16

√

3

π

Ai

(GM)3/2
,

ωi =

√

8

3π
Ωi

ψ(GM)1/2 , τi =

√

32π

3
T i

H(GM)1/2 ,

(4.1)

which allow us to compare physical properties of configurations with the same ADM mass

M . The script i labels the quantity corresponding to the black ring (i =BR) or the S3

black hole (i=BH). We will also use the total horizon area,

atotal
H = aBR

H + aBH
H , (4.2)

in order to study the “phase diagram” (total entropy vs. j2) of the black saturn. Occa-

sionally we simply use aH for atotal
H .

The reduced temperature and angular velocity are normalized such that τBH = 1 for

the five-dimensional Schwarzschild black hole (j = 0), and ωBH = 1 for the maximally

rotating (singular) Myers-Perry black hole (j = 1).9

4.2 Myers-Perry black hole and black rings

In preparation for studying the physical properties of black saturn, we review the basic

properties of the Myers-Perry black hole [11] and the black ring [8] with a single angular

momentum. Figure 3 shows for fixed mass the behaviors of the area, angular velocity

and temperature of the Myers-Perry black hole and the black ring as the reduced angular

momentum j is varied.

For the Myers-Perry black hole the reduced angular velocity grows linearly with the

reduced angular momentum — in fact our normalization is such that ωMP = jMP. (In order

to better represent the near-j = 1 behavior we choose here to plot the physical properties

vs. j2 rather than j, as it was done in [9].) Increasing j, the area aMP
H decreases and the

9Our normalizations of τi and ωi differ from the conventions used in [9].
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black hole gets colder (τMP decreases). As j → 1, the S3 horizon flattens out as a pancake

in the plane of rotation, and at j = 1 the solution becomes nakedly singular.

Black rings come in two types: thin and fat black rings. The distinction is based on

the “phase diagram” showing aBR
H vs. j2 (see figure 3(a)): thin rings are those on the upper

branch, while the fat rings are those on the lower branch. As j → 1, the S2 of fat rings

flatten out in the plane of rotation, and the inner S1 radius gets smaller while the outer S1

radius grows (the shape of black rings was studied in detail in [9]). As j increases, the fat

rings spin faster and become colder, much like the fast spinning Myers-Perry black hole.

As j → 1, the fat rings approach the same naked ring singularity of the j = 1 Myers-Perry

solution.

A thin black ring has a nearly round S2, and the S1 radius is larger than the S2 radius.

As j increases, thin black rings get hotter as the S2 gets smaller (and the ring thinner),

and the angular velocity decreases. We shall see that many “phases” of black saturn also

have versions of the “thin” and the “fat” black ring branches.

4.3 Configurations with JBH
Komar = 0

Throughout this section we study the subfamily of black saturn with c̄2 = 0. It was shown

in section 3.7 that for c̄2 = 0 the intrinsic angular momentum of the S3 black hole vanishes,

JBH
Komar = 0.

When c̄2 = 0 it is simple to solve the balance condition (3.17) for κ3: there are two

solutions, but only one of them satisfies the constraints 0 < κ3(κ1, κ2) < κ2 < κ1 < 1. In

order to illustrate the physics of the solution, we choose to further fix a physical quantity,

so that we are left with a 1-parameter family of solutions. The extra physical parameter

to be fixed will be either the reduced area of the black ring aBR
H (section 4.3.1) or the S3

black hole aBH
H (section 4.3.2). Alternatively, we fix in section 4.3.3 the Komar mass of the

black hole and test the gravitational interaction between the S3 black hole and the black

ring.

4.3.1 Fixed area black ring

As shown in figure 3(a), the reduced area aBR
H of a single black ring takes values 0 < aBR

H ≤
1. We can therefore fix the reduced black ring area at any value between 0 and 1 and

then “grow” the S3 black hole at the center of the black ring. The result is illustrated for

representative values of aBR
H in figure 4.

For any value 0 < aBR
H ≤ 1, there exist both a fat and a thin black ring, and the

S3 black hole can be grown from either. This is illustrated most clearly in figure 4(b),

where we have fixed aBR
H = 0.8 and plotted atotal

H vs. j2. The standard Myers-Perry black

hole “phase” is shown in light gray, the black ring “phase” in darker gray. The black

saturn configuration with fixed aBR
H = 0.8 (black curve) starts at the thin and fat black

ring branches at aH = 0.8. Since JBH
Komar = 0, the S3 black hole contributes no angular

momentum, and hence j decreases as long as the black hole grows, i.e. until reaching the

cusp of the curve in figure 4(b).

Figure 4(a) shows similarly the growth of an S3 black hole at the center of the ring,

but now with aBR
H fixed at smaller values, aBR

H = 0.1 (dotted) and 0.05 (solid). The plot
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shows the saturn “phases” grow from the standard fat black ring branch; they meet the

thin black ring branch at very large values of j not shown in figure 4(a). For such small

fixed areas of the black ring, the S3 black hole is allowed to grow very large, and these

saturn “phases” dominate the standard black ring branch entropically.

Figures 4(c) and 4(d) show that the S3 black hole is rotating, i.e. it has non-zero

angular velocity ωBH. That the S3 black hole rotates despite carrying no intrinsic angular

momentum (JBH
Komar = 0) is naturally interpreted as gravitational frame-dragging: the

rotating black ring drags the spacetime surrounding it and that causes the S3 horizon to

rotate. This interpretation is supported by the fact that the angular velocity ωBH follows,

and is always smaller than, ωBR.

To gain a better understanding of the physics of the black saturn, we first focus on the

cases of small values of the fixed black ring area. The relevant plots are figure 4(a) (atotal
H

vs. j2), figure 4(c) (angular velocities vs. j2), and figure 4(e) (temperatures10 vs. j2) for

fixed aBR
H = 0.1 (dotted) and 0.05 (solid). For these values of the black ring area, the thin

black ring is very thin, has large S1 radius and is rotating slowly (ωBR is small). A small

S3 black hole at the center of such a thin black ring will hardly feel the surrounding ring.

Indeed, for large j, the S3 black hole has very small angular velocity ωBH (figure 4(c)), and

it has large temperature τBH (figure 4(e)) which decreases as the black hole grows. Thus

the black hole behaves much like a small-mass Schwarzschild black hole, and we expect its

horizon to be nearly round as long as it has small area.

Instead of growing the S3 black hole from the thin black ring branch, consider starting

with the fat black ring with aBR
H = 0.05 or 0.1. The fat black ring has j near 1, the horizon

is flattened out and it rotates fast. The S3 black hole growing from this configuration will

naturally be highly affected by the surrounding black ring. Consequently, the dragging-

effect is much stronger, and indeed figure 4(c) shows that the S3 black hole is rotating fast.

Its temperature is very small (figure 4(e)), so it behaves much like the highly spinning

small area Myers-Perry black hole near j = 1. Thus we expect the S3 black hole to flatten

out in the plane of the ring in this regime of black saturn.

Figures 4(b), 4(d), and 4(f) show the equivalent plots for the black ring area fixed at

a larger value aBR
H = 0.8. In this case, the distinction between growing the black hole from

the thin or fat black ring branches is less pronounced. The S3 black hole is always dragged

along to that the angular velocity is far from zero, but even as the black ring becomes fat,

the S3 black hole never spins so fast that it enters the regime of the near-j = 1 Myers-Perry

black hole as the area goes to zero. This effect can be seen from the temperature τBH which

increases as aBH
H → 0 — compare figures 4(e) and 4(f).

Increasing the fixed value of the black ring area, aBR
H , the corresponding black saturn

“phase” becomes smaller and smaller, and for fixed aBR
H = 1 we find no saturn solutions.

This is because growing the S3 black hole with JBH
Komar = 0 decreases the total angular

momentum j, and for the black ring with j =
√

27/32 and aBR
H = 1, there are no black

ring solutions with less angular momentum.

10Note that we plot temperatures on a logarithmic scale in order to better capture the structure of all

phases in one plot.
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Figure 4(a): Total aH for aBR

H = 0.05 (solid) and

aBR

H = 0.1 (dotted).

Figure 4(b): Total aH for aBR

H = 0.8.

Figure 4(c): ωBR (upper curve) and ωBH (lower

curve) for aBR

H = 0.05 (solid) and aBR

H = 0.1

(dotted).

Figure 4(d): ωBR (upper curve) and ωBH (lower

curve) for aBR

H = 0.8.

Figure 4(e): τBR (lower curve) and τBH (upper

curve) for aBR

H = 0.05 (solid) and aBR

H = 0.1

(dotted).

Figure 4(f): τBR (lower curve) and τBH (upper

curve) for aBR

H = 0.8.
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Figure 4: For fixed total mass and some representative values of the aBR

H
, the various reduced

quantities are plotted vs. j2. The gray curves correspond to the Myers-Perry black hole (light

gray) and the black ring (darker gray) respectively.
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curves). The dotted curve corresponds to a Myers-Perry black hole surrounded by a nakedly singular
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H
=

√
6 curve.

aBH

H =
√

6
­

­À

aBH

H =
√

3

aBH

H =
q

3

2

aBH

H =
q

1

100.05 0.1

2.453

2.452

2.451

2.45

Finally, let us note that it is possible to fix the black ring area to be zero, aBR
H = 0.

The aBR
H = 0 saturn configuration describes a nakedly singular ring rotating around the S3

black hole, which is also rotating as it is being dragged along by the ring singularity. The

reduced area of the S3 black hole vs. j2 for this configuration is shown as a dotted curve

in figure 5.

4.3.2 Fixed area black hole

We keep c̄2 = 0 as before, so that JBH
Komar = 0, but instead of keeping the black ring area aBR

H

fixed as in the previous subsection we now fix the S3 black hole area aBH
H . Thus we “grow”

a black ring around the S3 black hole area of fixed area. A balanced black ring cannot exist

for arbitrarily small angular momentum while keeping the configuration in equilibrium, so

the black ring grows from a nakedly singular ring around the Myers-Perry black hole; this

is nothing but the aBR
H = 0 configuration discussed at the end of the previous section, and

shown as the dotted curve in figure 5.

Figure 5 shows black saturn phases with fixed black hole area for representative values

of aBH
H . For each value of aBH

H , the corresponding curve has a fat and a thin black ring

phase. Note that the thin ring branches extend to large values of j.

The large-j tails of the constant aBH
H curves show that balanced saturn configurations

can have very large entropies. It can be argued [14] that for any fixed value of 0 < aBH
H <

2
√

2, the tails extend to arbitrarily large j. This in turn means that for any j there exist

black saturn configurations with total area atotal
H arbitrarily close to 2

√
2. We refer to [14]

for further details.

When the S3 black hole area is close to zero, the black saturn curves approach the

– 27 –



J
H
E
P
0
5
(
2
0
0
7
)
0
5
0

phase of the single black ring. Since the black hole itself does not carry any intrinsic spin,

we can set its area to zero, aBH
H = 0, and then black saturn simply reduces to the black

ring solution.

It is worth noting that for large values of aBH
H , the black saturn curves also extend

to small values of j. For c̄2 = 0, the saturn phases never reach j = 0. This is expected

because j = 0 requires that the black hole and the black ring are counter-rotating and that

is never the case for the c̄2 = 0.

4.3.3 Saturn frame-dragging

Above we have seen that in the presence of the rotating black ring of black saturn, an S3

black hole with no intrinsic spin (JBH
Komar = 0) can be rotating (ωBH 6= 0). We have inter-

preted this as a consequence of gravitational frame-dragging. We test this interpretation

by studying the geometry of the black saturn configuration (still keeping c̄2 = 0). If indeed

we are seeing frame-dragging, then the effect should be very small when the black ring is

thin and very far from the S3 black hole, and increase as the black ring and the black hole

come closer. We keep mBH = MBH
Komar/M fixed and let the distance between the black hole

and black ring vary.

To characterize the configuration, we first introduce the reduced inner and outer S1

(horizon) radii of the black ring

rinner = (GM)−1/2
√

Gψψ

∣

∣

∣

ρ=0, z̄=κ2

, router = (GM)−1/2
√

Gψψ

∣

∣

∣

ρ=0, z̄=κ3

. (4.3)

It is shown in [9] that for a single black ring of fixed mass, the inner radius rinner decreases

monotonically when going from the thin black ring (i.e. large-j) regime to the fat black

ring branch, and that rinner → 0 when j → 1 for the fat black rings. However, when a

black hole is present at the center of the ring, as in black saturn, there is a lower bound on

the inner radius of the black ring.11

Figure 6(a) shows the angular velocities of the S3 black hole and the black ring plotted

vs. rinner for fixed Komar mass mBH = 0.5. The lower branch of the ωBR curve (black)

corresponds to the slowly rotating “thin” black ring. For large radius, the S3 black hole is

not affected much and ωBH is correspondingly small (gray curve). As rinner decreases the

black ring spins faster and so does the S3 black hole. Clearly there is a lower bound for

rinner, but surprisingly, the ring starts growing after reaching this minimum. It turns out

that on the “upper” branch of the ωBR curve, the inner and outer S1 radii approach each

other, so that the ring again becomes thin. But contrary to the standard thin black rings,

the angular velocity increases as the ring grows. Eventually, as the black ring becomes

thinner, the area aBR
H goes to zero leaving just a nakedly singular black ring around a

Myers-Perry black hole (dotted curve in figure 5).

As shown in figure 6(a), the S3 black hole angular velocity, ωBH, follows that of the

black ring. In particular, ωBH continues to grow even if the inner radius of the black ring

is growing. This may at first seem to contradict that the rotation of the S3 black hole is

caused by frame-dragging, since it would seem that the S3 black hole should slow down as

11As pointed out in section 3.9, there is no smooth merger limit for the balanced black saturn system.
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Figure 6: Test of frame-dragging: figure 6(a) shows angular velocities ωi vs. the inner radius of

the black ring rinner for fixed Komar mass mBH = MBH

Komar
/M = 0.5. Figure 6(b) shows the angular
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mass distributions: mBH = MBH
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the black ring becomes thinner and its S1 radius grows. However, since the S3 black hole

is itself rotating, it flattens out in the plane of rotation. To study this effect we compute

the proper distance between the S3 black hole and the black ring (for fixed mass):

ℓ = (GM)−1/2

∫ κ1

κ2

dz̄
√

Gz̄z̄ . (4.4)

As expected, the proper distance ℓ increases as the inner radius of the black ring increases

along the lower branch in figure 6(a). But even as the inner radius rinner of the black ring

increases (upper branch), the proper distance ℓ continues to decrease. This confirms that

the black hole, as it is spinning faster, flattens out into the plane of rotation. Figure 6(b)

shows the angular velocities as functions of the proper distance ℓ, for three different mass

distributions mBH = 0.1, 0.5, and 0.9. The angular velocity of the black ring increases as

the proper distance ℓ decreases. And ωBH → 0 when ℓ becomes large. This is precisely the

behavior one would expect from frame-dragging.

Moreover, figure 6(b) shows that the effect of dragging depends on the relative masses

of the black ring and the S3 black hole: the effect of a thin small-mass black ring on a

large-mass black hole is weak (mBH = 0.9), but the effect of a thick massive black ring on

a small-mass black hole is strong (mBH = 0.1).

The above analysis gives strong evidence that we are indeed observing rotational frame-

dragging.

4.4 Black hole with intrinsic spin

We now take c̄2 6= 0 and study the more general saturn configurations. When c̄2 6= 0, the

S3 black hole and the black ring have independent rotation parameters, in particular we

can have JBH
Komar 6= 0. As a result, the two black objects can be co- or counter-rotating. We

illustrate the physics in two examples.
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H
= 0.8 and ωBH = 0 (dotted curve). For reference, the dark gray curve is the black ring while

the lighter gray curve is the Myers-Perry black hole.
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4.4.1 Counter-rotation and ΩBH=0

In the previous section, the S3 black hole had no intrinsic rotation, JBH
Komar = 0, and it was

rotating only because it was dragged along by the black ring. With c̄2 6= 0 the S3 black

hole has its own intrinsic angular momentum JBH
Komar 6= 0, and it is possible to let the S3

black hole counter-rotate in such a way that the intrinsic angular momentum cancels the

effect of the dragging, so that the S3 horizon becomes non-rotating, ωBH = 0.

As an example of this effect, figure 7 shows a curve of black saturn solution with

ωBH = 0 fixed. In addition we have also fixed aBR
H = 0.8. This ωBH = 0 curve starts at the

thin black ring branch with aH = 0.8 and the black hole grows “Schwarzschild style” (zero

angular velocity, high temperature which decreases as the black hole grows). As the black

ring becomes fatter, the black hole is affected more and more by the ring, and at some

point its intrinsic counter-rotation can no longer resist the dragging of the black ring; at

this point the ωBH = 0 curve ends.

The possibility of making the S3 horizon non-rotating by turning on “intrinsic” angular

momentum is reminiscent of the situation for the 4+1d supersymmetric S3 black hole.

This black hole also has a non-rotating horizon, Ω = 0, and it can be shown [38] that

this requires angular momentum to be stored in the Maxwell fields inside the horizon.

Similar configurations were also discussed in [34]. Of course, for black saturn there are no

Maxwell fields to carry the angular momentum, but the picture of having contributions to

the rotation from “inside” the horizon to make ωBH = 0 is common for the two systems.

4.4.2 Reaching j = 0

One might have expected the only solution with j = 0 to be the Schwarzschild black hole.

However, taking into account solutions with more than one component of the horizon,

counter-rotation can give j = 0. For black saturn this is possible while maintaining balance.
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Figure 8 shows a saturn configuration with aBR
H = 0.01 and ωBR = 0.3 in the phase

diagram atotal
H vs. j2. To reach j = 0 requires that the black ring has small area, but

otherwise there is nothing special about the values chosen for aBR
H and ωBR; they just

illustrate the physics well. For large values j, the black ring and the S3 black hole are co-

rotating, as can be seen from the j vs. ωBH plot in figure 8. As the angular velocity of the

black hole decreases, the total angular momentum j decreases and the area of the S3 black

hole grows. The area reaches a maximum close to where the black hole angular velocity

vanishes. As the S3 black hole counter-rotates, ωBH < 0, the area decreases. Eventually,

the counter-rotation is such that the total angular momentum at infinity vanishes, j = 0.

The black hole can be even more counter-rotating and then j becomes negative. Note from

the j vs. ωBH plot in figure 8 that when the black holes are co-rotating j is almost linear in

the angular momentum, just as it is for a Myers-Perry black hole, and the range covered

−1 <∼ ωBH
<∼ 1, is nearly the same.

It is clear from figure 8 that the 4+1d Schwarzschild black hole and the slowly spinning

Myers-Perry black holes are not unique. We show in section 4.5.2 that there is a 2-fold

continuous family of black saturn solutions with j = 0.

4.5 Non-uniqueness

In the previous sections we have examined a number of examples which — among other

phenomena — all illustrated non-uniqueness in the phase diagram aH vs. j2. It is clear

from these examples that black saturn covers large regions of the phase diagram. We now

explore how large.

4.5.1 Non-uniqueness in the phase diagram

To study the region of the phase diagram covered by black saturn, we choose random sets of
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Figure 9: Non-uniqueness in the phase diagram: The plot shows the distribution of black saturn

for 100.000 randomly chosen black saturn configurations.

points (κ1, κ2, κ3) satisfying the ordering (3.3) and plot the corresponding point (j, atotal
H )

in the phase diagram.12 Figure 9 shows the distribution of 100.000 such points.

We first note that we find no points with j < −1, thus black saturn takes values

of j ≥ −1. The asymmetry between positive and negative j is just a choice of rotation

direction, which can be reversed by simply taking ψ → −ψ in the black saturn metric.13

Next the total area atotal
H is always less than the area of the static Schwarzschild black

hole, which has aSchw
H = 2

√
2. We believe that there are black saturn configurations with

atotal
H arbitrarily close to aSchw

H . In fact for the dataset shown, we have

min(aSchw
H − atotal

H ) = 9.5 · 10−4 . (4.5)

The distribution14 of black saturn configurations in the phase diagram figure 9 indicates

that the region bounded by the Myers-Perry phase (shown in light gray for both positive

and negative j) is fully covered by black saturn solutions. But there are also points outside

this region: for j greater than ∼ 0.5, there are black saturn solutions with total area greater

than the Myers-Perry black hole and the black ring.

By tuning the distribution, it can be shown [14] that the whole open strip

0 < atotal
H < 2

√
2 = aSchw

H , j ≥ 0 , (4.6)

is covered with black saturn configurations. For any j ≥ 0 the high-entropy configurations

are black saturn with an almost static S3 black hole (accounting for the high entropy)

12The BZ parameter c̄2 is fixed in terms of (κ1, κ2, κ3) by the balance condition (3.17) with ǫ = +1.
13It may also be noted that while ωBH takes both positive and negative values, we find that ωBR is always

positive. The bound ωBR > 0 is intuitively a consequence of the fact that the black ring needs to rotate in

order to keep the system balanced.
14The density in the distribution is caused by the discrete non-uniqueness in regions where both thin and

fat black rings exist, but can also be affected by the particular distribution of points (κ1, κ2, κ3).
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hole and the black ring.
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/

surrounded by a large thin black ring (carrying the angular momentum). This type of

configuration allow us to have black saturns with total area arbitrarily close to the bound

set by the static Schwarzschild black hole. Details of this and the structure of the phase

diagram are presented in [14].

4.5.2 Balanced saturn with zero angular momentum j=0

The phase diagram figure 9 strongly indicates that the j = 0 black saturn configurations

are non-unique. We confirm the non-uniqueness in this section by studying the ranges of

area, angular velocity and temperature covered by the balanced j = 0 saturn solutions.

Figure 10 shows the regions of the (ωi, a
i
H) plane covered by the black ring and the

S3 black hole in saturn configurations with j = 0. Since ωBH < 0 and ωBR > 0, the two

objects are clearly counter-rotating. Note that the black ring area aBR
H has been multiplied

by a factor of 50 in order for the plot be visible in the same plot as the S3 black hole. The

total area atotal
H never exceeds that of the 4+1d Schwarzschild black hole.

The points in figure 10 are colored according to the temperature τi of the corresponding

black hole/ring: Light gray means hot and black means cold. The scales used for the black

hole and the black ring temperatures are different, as shown in figure 10. The S3 black

hole temperature varies roughly between 0 and 3 (roughly like the Myers-Perry black hole

which varies between 0 and 1), while the black ring is much hotter with temperature varying

between 13 and ∼ 103. This, and the very small area of the black ring, signals that these
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are very thin, large radius black rings.

We further note that there is discrete non-uniqueness in the black ring sector of j = 0

black saturn. This can be seen by the “skirt” hanging over the righthand-part of the black

ring area vs. ωBR “bell”. The rings here have lower temperatures than the other rings

with the same parameters, and it is therefore natural to interpret this “skirt” as a fat ring

branch.

The points (ωBH, aBH
H ) lie in the wedge shown in figure 10. For each point in this

S3 black hole wedge there is one (or two, in case of additional discrete non-uniqueness)

corresponding point(s) in the black ring “bell”. But it is not clear which S3 black hole

goes together with which black ring(s). That is illustrated better in figure 11, which shows

two plots of ωBR vs. ωBH. The first is colored according to the area of the black hole aBH
H ,

while the second is colored according to the area of the black ring aBR
H . Light gray means

large area, black small area. As shown, different scales are used in the two plots.

In both figure 10 and figure 11 certain edges of the plots are rugged, and there are small

white uncovered regions. This is simply due to the finite number of points generated for

each plot, since some regions are covered less than others (this was also visible in figure 9).

4.5.3 Fixed j plots

We displayed in the previous section the regions of parameter space (ωi, a
i
H) covered by

saturn configurations with j = 0. Likewise we can explore non-uniqueness for saturn

configurations with j fixed at other values. Figure 12 shows (ωi, a
i
H) plots for representative

values of fixed j.

When j >
√

27/32 ∼ 0.92, the S3 black hole angular velocity ωBH and area aBH
H vary

over a large range of values. This is shown in figures 12(a)-(d). As j becomes smaller

than j =
√

27/32, which is the minimum value of j for the single black ring, the black

ring of saturn has very small area and the range of the S3 black hole parameters are more

constrained, see figures 12(e)-(f). When the black ring and S3 black hole are counter-

rotating so that j is negative, the S3 black hole parameters differ only little from the
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Figure 12: For fixed total mass and some representative values of j2, the area of the black hole

(gray dots) and the area of the black ring (black dots) are plotted against their respective angular

velocities. The superimposed curves correspond to the area of a single Myers-Perry black hole

against its angular velocity (upper curve), and similarly for the black ring. For these curves, the

angular momentum j is of course not fixed. Note that for the black hole we included both the

positive and negative ωBH.

ωiωBH ωBH ωi

ωiωBH ωiωBH

ωiωBH ωiωBH

single MP bh
J

JĴ
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parameters of the Myers-Perry black hole, and the black ring is very thin and contributes

little to the total area.
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4.6 Solutions with ǫ = −1

Up to this point we have examined the physics of black saturn solutions for which the

condition for balance (3.4) was imposed with the choice of sign ǫ = +1, and hence c̄2 >

−κ−1
2 . Here we briefly discuss the balanced saturn solutions with ǫ = −1 for which c̄2 <

−κ−1
2 .

As pointed out at the end of section 3.7, the solutions with c̄2 > −κ−1
2 have positive

Komar masses, while for c̄2 < −κ−1
2 , the Komar mass of the S3 black hole is negative. We

interpret this as an effect of extreme rotational frame-dragging, which makes ΩBHJBH
Komar

so negative that the Smarr relation (3.43) renders the Komar mass negative.

In the limit c̄2 → −κ−1
2 , several of the dimensionful physical parameters diverge.

However, the dimensionless fixed-mass reduced quantities remain finite. In particular, the

dimensionless proper distance ℓ, defined in (4.4), between the black ring and the S3 goes

to zero when c̄2 → −κ−1
2 . So this is a singular merger limit which ends in the nakedly

singular c̄2 = −κ−1
2 solution.

The balanced saturn solutions with c̄2 < −κ−1
2 occupy only a small region of the phase

diagram (j, atotal
H ). They have j ≃ −1 and total area 0 < atotal

H
<∼ 1. We interpret these

solutions as tightly bound gravitational systems; they probably deserve a closer study than

the one provided here.

5. Discussion

We have presented and analyzed a new exact solution to 4+1-dimensional vacuum Einstein

equations describing Black Saturn: a Myers-Perry black hole surrounded by a black ring

which is balanced by rotation in the plane of the ring. The system exhibits a number of

interesting properties, such as non-uniqueness and frame-dragging, which were summarized

in the Introduction.

Most surprising is probably the result that the 4+1-dimensional Schwarzschild black

hole and slowly spinning Myers-Perry black holes are not unique. Black saturn shows

that once multiple black hole horizons are considered (and staticity not assumed for the

J = 0 configurations) black holes in 4+1-dimensions have large degeneracies. This and the

structure of the phase diagram for 4+1-dimensional black holes can be found in [14].

We expect both black objects in black saturn to have ergoregions whenever their an-

gular velocities are non-zero. This is always the case for the black ring, whose ergosurface

is expected to have topology S1 × S2 [8]. The S3 black hole can be tuned to have zero

angular velocity, and it is natural to expect that the solution, despite having non-vanishing

intrinsic angular momentum, has no ergoregion. Generally, however, we expect an ergore-

gion bounded by an S3 ergosurface. The metric in Weyl axisymmetric coordinates (ρ, z)

is sufficiently complicated that we have not extracted useful equations for the ergoregions.

We hope this will be addressed in future work, and note that it may be useful to first

examine the ρ = 0 metric in order to examine the intersections of the ergosurfaces with

the plane of the ring.

It would be desirable to transform the black saturn metric to a simpler coordinate

system. The supersymmetric concentric black hole - black ring solutions of [15] can be
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written in ring coordinates (x, y) and it would presumably simplify our solution consider-

ably to write it in such coordinates. We have presented in appendix A.2 the coordinate

transformation from Weyl axisymmetric coordinates (ρ, z) to ring coordinates (x, y) for the

simpler limit of the black ring without the S3 black hole. We leave it to future work to

convert the full black saturn solution to ring coordinates. We expect that ring coordinates

will make it easier to study the ergoregions.

Focusing on the plane of the ring, we have numerically checked examples of co- and

counter-rotating configurations, and found no closed timelike curves (CTCs). While we see

no signs of CTCs — the horizon areas and temperatures are positive and well-defined in

the full range of parameters — this should be analyzed in greater detail than done in this

paper. Writing the solution in ring coordinates (x, y) will likely facilitate such an analysis.

The 1st law of thermodynamics for black saturn is studied in [14]. (We refer to refs. [39]

and [40] for other works on black ring thermodynamics.) Black saturn is an example of

an equilibrium system of two black objects which generally have different temperatures

and different angular velocities. This is therefore only a classical equilibrium. It is shown

in [14] that imposing thermodynamic equilibrium, in the sense of the two objects having

equal temperatures and equal angular velocities, reduces the continuous family of saturns

to a one-parameter family of equilibrium solutions with only discrete non-uniqueness. The

phase diagram of equilibrium solutions is presented in [14].

The saturn system may well be classically unstable. The black ring of black saturn

likely suffers from the same instabilities as the single black ring [8]. Using the Poincaré

(or “turning-point”) method, it was argued in [41] that (at least) one mode of instability

would appear at the cusp of the black ring curve in the area vs. angular momentum phase

diagram. At the cusp, where the thin and fat black ring branches meet, the black ring

has minimum angular momentum and maximum entropy (for given mass). Studying the

potential for the radial balance of a black ring, evidence was found [9] that a thin black ring

would be stable under small radial perturbations while a fat black ring would be unstable.

The radial instability of fat black rings appear exactly at the cusp, and so this mode is a

physical concretization of the mode predicted by the turning-point method [41].15

Under radial perturbations, the analysis of [9] indicated that fat black rings either col-

lapse to S3 black hole (if perturbed inward) or possibly expand to become a thin black ring

(if perturbed outwards). The latter may not happen in a dynamical process if thin black

rings suffer from other classical instabilities, such as the Gregory-Laflamme instability [42],

not captured by the turning-point method. Showing that Gregory-Laflamme modes always

fit on (thin) black rings, refs. [10, 9] argued that thin black rings very likely suffer from

Gregory-Laflamme instabilities. Likewise, we expect thin black rings of the black saturn

system to be unstable to Gregory-Laflamme instabilities.

While some stability properties of black saturn can be expected to be inherited from

the individual components, the Myers-Perry black hole and the single black ring, there

15Due to the continuous non-uniqueness, the implementation of the turning-point method for black saturn

does not seem possible. Following [9] one can try to compute the radial potential for the black ring in black

saturn, but here one also has to choose to fix some non-conserved quantities in order to carry out the

analysis.
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can also be new instabilities for the black saturn system, for instance, perturbation of the

center-of-mass of the S3 black hole away from the center of the ring.

We constructed the black saturn solution using the inverse scattering method [18 –

20]. The seed solution and the soliton transformations invite a number of interesting

generalizations of black saturn:

• Multiple rings of saturn: It is straightforward to generalize the seed solution to

include more rod sources that will correspond to black ring horizons. One can also

add negative density rods to facilitate the addition of angular momentum for each

black ring using (anti)soliton transformations like we did in section 2.2. Provided all

singularities can be removed as done here, and the system balanced, the generated

solution will describe “the multiple rings of black saturn”. One interesting property

of multiple ring solutions is the high degree of continuous non-uniqueness as we

discussed in the Introduction.

• Doubly spinning black saturn: The 3-soliton transformation in section 2.2 adds a

second angular momentum for the S3 black hole when b3 6= 0. An analysis of this

solution is required to check that all possible singularities can be eliminated. Then

it will be interesting to study the physics of this doubly spinning saturn system. We

expect that the second “intrinsic” spin JKomar
φ will only be non-vanishing for the S3

black hole, but that the black ring will also have non-vanishing angular velocity on

the S2. This would be interpreted as rotational dragging of the S3 black hole on the

black ring.

The 3-soliton construction of section 2.2 does not give the most general doubly spin-

ning black saturn configuration, because the black ring would not carry independent

angular momentum on the S2. The more general black saturn configuration should

be possible to obtain with the methods recently used to construct the doubly spinning

black ring [27].

Doubly spinning black rings likely suffer from superradiant instabilities [43]. It would

be interesting to see if such an instability is present also when the black ring is only

being dragged on the S2 by the S3 black hole.

• Dipole black saturn: Black rings can carry non-conserved “dipole charges” [44].

Adding dipole charge(s) to the black ring will give a dipole black saturn solution.

The techniques [45] for adding dipole charge by combining two or more vacuum so-

lutions should apply here.

• Charged black saturn: Vacuum solutions can be charged up to carry conserved charges

— and for black rings also dipole charges. Lifting the solutions to ten dimensions

and using boosts and dualities it is easy to charge up Myers-Perry black holes and

black rings to carry, say D1- and D5-charges. The same transformations give a D1-

D5-charged black saturn configuration (although not the most general such solution).

For black rings there is a technical difficulty in adding the third charge, momentum

P , as detailed in [46]. This can be overcome by starting with a dipole black ring,
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and in this way a class of non-supersymmetric three-charge black rings have been

obtained [47].

Likewise, a D1-D5-P black saturn solution can be obtained from dipole black sat-

urn, and this would lead to (a subclass of) non-supersymmetric generalizations of

the supersymmetric concentric black ring solutions [15]. It would be interesting if

techniques can be developed to add independent charges to multi-component black

hole systems.

As discussed in the Introduction, one motivation for the existence of black saturn is to

think of a thin black ring balanced in the external potential of the S3 black hole. We have

of course seen clear evidence of the gravitational interactions between the black ring and

the S3 black hole, for instance the rotational dragging (see section 4.3). So considering the

black hole as providing an external potential should only be seen as a motivation for the

case where the black ring is very thin with large S1 radius so that the interactions between

the objects is negligible. Following the method of [9] one can take the system off-shell

and study the equilibrium of forces on a very thin black ring around a small black hole.

Presumably this would give a Newtonian balance between a string-like tension of the ring

and the angular velocity in the background gravitational potential of the S3 black hole.

The balanced black saturn solution presented here has two separate sectors. These

arise from two different ways of imposing the balance condition, as described in section 3.

We have focused almost entirely on the sector where the Komar masses of both the black

ring and the S3 black hole are non-negative. However, the other sector — for which the S3

black hole Komar mass is negative — may also contain interesting physics. We interpret

the possibility of negative Komar mass as a consequence of extreme rotational dragging

experienced by the S3 black hole when its Komar angular momentum cannot counter the

dragging by the black ring. It would be interesting to understand this strongly interacting

system better.

The 3+1 dimensions double-Kerr solution can be constructed with methods similar to

the ones used in this paper. While it is not possible for two Kerr-black holes to be balanced

by spin-spin interactions alone, one could ask if it is for two Myers-Perry black holes in

4+1 dimensions. The static solution describing two (or more) Myers-Perry black holes

held apart by conical singular membranes is easy to construct using the methods of [29];

this family of solutions was studied in [48]. Angular momentum can be added by soliton

transformations similar to the ones used here. It is not clear if the resulting solution can

be made free of singularities and, even if so, if the black holes can be held apart by the

spin-spin interactions.

Little is known about what types of black holes are admitted by the Einstein equa-

tions in six and higher-dimensions. The main focus has been on spacetimes with a single

connected black hole horizon, but black saturn has shown that interesting physics arises

in higher-dimensional multi-black hole systems. It will be interesting to see what exotic

multi-black hole solutions higher-dimensional gravity has to offer.
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Figure 13: Sources for the Myers-Perry black hole. The timelike rod is aligned along (1, 0, ΩBH

ψ ).
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A. Limits

In this section we provide details of the Myers-Perry black hole limit and the black ring

limit of the black saturn solution.

A.1 Myers-Perry black hole

From the rod structure figure 2(b) of the full solution, one can see that the Myers-Perry

black hole with a single angular momentum is obtained by eliminating the rod correspond-

ing to the black ring. There is however an issue of the order of limits. First one can note

that from our general saturn solution, with c1 and c2 arbitrary, the following two limits

result in the same solution:

Limit 1 : a1 → a5 , then a5 → a4 , . (A.1)

Limit 2 : a5 → a4 , then a1 → a4 , . (A.2)
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As long as c1 and c2 are kept fixed (i.e. the regularity condition (3.7) is not imposed), these

two limits are equivalent and give the metric

Gtt = − µ3

[

−c2
2µ

2
2µ3 + (ρ2 + µ2µ3)

2
]

µ2

[

c2
2µ3ρ2 + (ρ2 + µ2µ3)2

] , Gtψ = − c2µ3(ρ
2 + µ2

2)(ρ
2 + µ2

3)

µ2

[

c2
2µ3ρ2 + (ρ2 + µ2µ3)2

] ,

Gψψ =
µ2

2(ρ
2 + µ2µ3)

2 − c2
2µ3ρ

2

µ2

[

c2
2µ3ρ2 + (ρ2 + µ2µ3)2

] , Gφφ =
ρ2

µ3
,

e2ν =
k2 µ2

[

c2
2µ3ρ

2 + (ρ2 + µ2µ3)
2
]

(ρ2 + µ2
2)(ρ

2 + µ2
3)(ρ

2 + µ2µ3)
.

(A.3)

To bring the metric given above to an asympotically flat form one has to perform change

the coordinates according to t = t′ − c2ψ
′ and ψ = ψ′. Finally, to show that this solution

given in (A.3) is indeed the Myers-Perry black hole with a single angular momentum, one

can change to prolate spheroidal coordinates as done in [30] and [21].

Now if we are interested in obtaining the Myers-Perry black hole as a limit of the black

saturn configuration, we must remove the black ring in a limit where the condition (3.7)

is imposed on c1. Note that in Limit 1 of (A.1), c1 → ∞. This is the reason we consider

Limit 2 in (A.1).

In the parametrization introduced in section 3.1 Limit 2 is

κ3 → κ2 , then κ2 → 0 . (A.4)

By first taking κ3 → κ2 we eliminate the divergence in c1 and then the κ2 → 0 limit can

taken safely. The resulting metric is (A.3).

With c̄2 fixed by the balanced condition (3.17), this limit can only be taken for ǫ = +1,

and one finds

c̄2 = 1 − 1

2κ1
(A.5)

and all physical parameters are then functions of the dimensionless parameter κ1 and the

scale L, which are related to the standard Myers-Perry black hole parameters r0 and a

through

r2
0 =

L2

2κ1
, a =

L(1 − 2κ1)√
2κ1

. (A.6)

A.2 Black ring limit

The ψ-spinning black ring is obtained by first setting c2 = 0, then taking a2 = a3. We

must continue to impose the condition (3.7) for c1; note that this condition is independent
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Figure 14: Sources for the black ring. The timelike rod has direction (1, 0, ΩBR

ψ ).

of a2. We find

Gtt =−
µ1

[

µ5(ρ
2 + µ1µ3)

2(ρ2 + µ1µ4)
2 − c2

1µ3µ4(µ1 − µ5)
2ρ4

]

µ4

[

µ5(ρ2 + µ1µ3)2(ρ2 + µ1µ4)2 + c2
1µ

2
1µ3µ4(µ1 − µ5)2ρ2

] , (A.7)

Gtψ =− c1µ3µ5(µ1 − µ5)(ρ
2 + µ2

1)(ρ
2 + µ1µ3)(ρ

2 + µ1µ4)
[

µ5(ρ2 + µ1µ3)2(ρ2 + µ1µ4)2 + c2
1µ

2
1µ3µ4(µ1 − µ5)2ρ2

] , (A.8)

Gψψ =
µ3µ5

[

µ5(ρ
2 + µ1µ3)

2(ρ2 + µ1µ4)
2 − c2

1µ
4
1µ3µ4(µ1 − µ5)

2
]

µ1

[

µ5(ρ2 + µ1µ3)2(ρ2 + µ1µ4)2 + c2
1µ

2
1µ3µ4(µ1 − µ5)2ρ2

] , (A.9)

e2ν = k2
µ3(ρ

2+µ1µ5)(ρ
2+µ3µ4)(ρ

2+µ4µ5)
[

µ5(ρ
2+µ1µ3)

2(ρ2+µ1µ4)
2+c2

1µ
2
1µ3µ4(µ1−µ5)

2ρ2
]

4µ1(ρ2+µ1µ3)(ρ2+µ1µ4)(ρ2+µ3µ5)2(ρ2+µ2
1)(ρ

2+µ2
3)(ρ

2+µ2
4)(ρ

2+µ2
5)

(A.10)

Note that for c1 = 0 we obtain the metric for the static black ring. The corresponding rod

structure is depicted in figure 14.

To verify that this solution really describes the ψ-ring, we rewrite the metric in ring

coordinates (x, y), i.e.

ds2 = −F (y)

F (x)

(

dt + Cλ R
1 + y

F (y)
dψ

)2

+
R2

(x − y)2
F (x)

[

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)
dφ2

]

, (A.11)

where

G(ξ) = (1 − ξ2)(1 + νξ) , F (ξ) = (1 + λξ) , Cλ =

√

λ(λ − ν)
1 + λ

1 − λ
. (A.12)

The coordinate transformation from Weyl coordinates (ρ, z) to ring coordinates (x, y) is

ρ =
R2

√

−G(x)G(y)

(x − y)2
, z =

R2(1 − xy)[2 + ν(x + y)]

2(x − y)2
. (A.13)
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Note that

dρ2 + dz2 = K(x, y)

[

− dy2

G(y)
+

dx2

G(x)

]

, (A.14)

with

K(x, y) = − R4

4(x−y)3
[x+y+ν(1+xy)][2+ν(1+x+y−xy)][2+ν(−1+x+y+xy)] . (A.15)

The rod endpoints are related to the parameters ν and λ as

a1 = R2α , a5 = −R2

2
ν , a4 =

R2

2
ν , a3 =

R2

2
. (A.16)

Here α < −ν/2 is a constant which will be determined below. With this choice, ρ2+(z−ai)
2

is a perfect square for i = 3, 4, 5 (but not for i = 1 for choice of α < −ν/2) so we have

simple expressions for µi = Ri − (z − ai) =
√

ρ2 + (z − ai)2 − (z − ai):

µ5 = −R2(1 − x)(1 + y)(1 + νy)

(x − y)2
, (A.17)

µ4 = −R2(1 − x)(1 + y)(1 + νx)

(x − y)2
, (A.18)

µ3 = −R2(1 − y2)(1 + νx)

(x − y)2
. (A.19)

The expression for µ1, however, involves an explicit squareroot, R1 =
√

ρ2 + (z − a1)2. We

write µ1 = R1− (z−a1), but keep R1 unevaluated. Then collect powers of R1 and simplify

the expressions for each metric component when only even powers of R1 are replaced by

their expression in terms of x, y. Then we end up in general for each metric component

with expressions of the form

gµν ∼ p0 + p1R1

q0 + q1R1
, (A.20)

where p0,1 and q0,1 are functions of x, y. Now it turns out, as can explicitly be verified, that

for all cases, p0/q0 = p1/q1 so that gµν = p0/q0. Thus we have eliminated the squareroot

R1 from the expressions, and indeed p0/q0 is a simple function of x, y. For example, we

find

Gtt = − 2 − 2α(1 + y) − ν(1 − y)

2 − 2α(1 + x) − ν(1 − x)
. (A.21)

We bring Gtt to the standard from given in (A.11) by choosing

α =
ν(1 + λ) − 2λ

2(1 − λ)
. (A.22)

The condition that α ≤ −ν/2 is then simply that ν ≤ λ, while −∞ < α gives λ < 1. We

have therefore recovered the bound

0 < ν ≤ λ < 1 (A.23)
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on the black ring parameters λ and ν.

With this choice (A.22) for α we have

e2ν =
k2(1 − ν)2

1 − λ

R2

(x − y)2
F (x)

K(x, y)
, (A.24)

so that choosing the integration constant k as

k2 =
(1 − λ)

(1 − ν)2
(A.25)

we recover the x, y-part of the metric (A.11). With these choices for α (the position of the

“fake” rod endpoint) and k, the full metric (A.7) becomes (A.11).

Note that in the black ring limit with c̄2 = 0, the periods (3.15) are ∆ψ = ∆φ = 2πk,

which with k given above agrees precisely with the result for the black ring [44]. Likewise

all physical parameters of the neutral black ring are reproduced from this limit of the black

saturn solution.
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